GRID-SIEM SD GROUP 29 SPRING '24

Trent Bickford Westin Chamberlain Ella Cook Daniel Ocampo

ML Realtime Option 1 – Kafka Stream

• Adapting current ML approach with Kafka Stream

- Pros
 - Kafka can handle large volumes of data with real-time data processing
 - can be integrated with Zeek & is open source

\circ Cons

- Training and running the ML model in real time will take a lot of computational overhead and require robust hardware resources
- Might introduce compatibility issues & data privacy issues
- Creates a single point of failure
- Changes required for implementation
 - Install and configure a Zeek to Kafka Plugin
 - Build plugin based on GIT page
 - Configure plugin
 - Will require changing settings by creating a new Zeek Script
 - Restart Zeek to begin forwarding logs to Kafka
 - Verify log forwarding
 - The model must be loaded into application's memory to ensure minimal latency in processing and predicting
- Will continually need to collect new batches of zeek logs over time
- The ML model will also need to continually be retrained & re-evaluated

ML Realtime Option 2 – Suricata & Watchdog

- Pros & Cons
 - \circ Pros
 - Similar to Kafka will be able to ingest the proper number of logs in real time
 - Can be integrated with Suricata & is open source
 - $\circ \text{ Cons}$
 - Same as kafka
 - Computational overhead, technical challenges of setup and implementation, data privacy, and creates a single point of failure
- Requirements
 - \circ Configure suricata
 - Output logs will need to be in eve.json format
 - Will need a watchdog-specific script to continually monitor the eve.logs in real time
 - Will also need to specify and understand the types of logs we want to include
 - Then the second script will be the machine learning which will have to have been loaded onto the python script memory with a library to do that (will need to look into options)
 - $_{\odot}$ All other steps remain the same

ML Considerations

- Implementation of 3rd party app & configuration to make real-time ML a reality
- Feasability of two fully functional ML components in time
- Partial functionality of realtime depending on implementation challenges that arise
- Still need to complete the planning stages of real-time since it was not in scope of project last semester
- Previous two slides are rough outline

Caldera Issues cont.

- Exe file not compatible with RTU machines
 - Security preventing exe file from running
 - Compatibility issues (old windows machine)

 to get caldera working it would probably require rewriting the entire agent program

Ping Flood attack

📕 *Local Area (Connection 5	[Wireshark 1.99.	0-SkunkWorksIEC61850	(Git Rev Unknown 1	from unknown)]
-----------------	--------------	------------------	----------------------	--------------------	----------------

View Go Capture Analyze Statistics Telephony Tools Internals Help

E 🖪 E Q Q 🖭 🖉 🖪 🎇 🎇 🔳 🔬 📄 🗶 🤁 🔍 🗢 🧼 🦗 生

Filter:			 Expression 	Clear	Apply Save Filter					
	Time	Source	Destination	Protocol	Length AbsoulteTime	DeltaTime	Info			
10500	80.194110000	27.37.47.111	192.108.1.211	TCP	1/4 21.40.37.	9982.000008000	LICP	segment of	a reassembled	PDUJ
10301	86.594193000	27.37.47.111	192.168.1.211	TCP	1/4 21:48:57.	. 9983:. 000043000	LTCP	segment of	a reassembled	PDUJ
10362	86.594223000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	.9983.000030000	[TCP	segment of	a reassembled	PDU]
10363	86.594233000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9983.000010000	[TCP	segment of	a reassembled	PDU]
10364	86.594264000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9983.000031000	[TCP	segment of	a reassembled	PDU]
10365	86.594272000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9983.000008000	[TCP	segment of	a reassembled	PDU]
10366	86.594309000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9984.000037000	[TCP	segment of	a reassembled	PDU]
10367	86.594340000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9984.000031000	[TCP	segment of	a reassembled	PDU]
10368	86.594370000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9984.000030000	[TCP	segment of	a reassembled	PDU]
10369	86.594379000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9984.000009000	[TCP	segment of	a reassembled	PDU]
10370	86.594409000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	.9985.000030000	[TCP	segment of	a reassembled	PDU]
10371	86.594439000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9985.000030000	[TCP	segment of	a reassembled	PDU]
10372	86.594471000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	.9985.000032000	[TCP	segment of	a reassembled	PDU]
10373	86.594479000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	.9985.000008000	[TCP	segment of	a reassembled	PDU]
10374	86.594509000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9986.000030000	[TCP	segment of	a reassembled	PDU]
10375	86.594540000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9986.000031000	[TCP	segment of	a reassembled	PDU]
10376	86.594570000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9986.000030000	[TCP	segment of	a reassembled	PDU]
10377	86.594599000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9987:.000029000	[TCP	segment of	a reassembled	PDU]
10378	86.594609000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9987.000010000	[TCP	segment of	a reassembled	PDU]
10379	86.594639000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9987.000030000	[TCP	segment of	a reassembled	PDU]
10380	86.594672000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9987.000033000	[TCP	segment of	a reassembled	PDU]
10381	86.594680000	27.37.47.111	192.168.1.211	TCP	174 21:48:57.	9987.000008000	[TCP	segment of	a reassembled	PDU]

Wireshark

Not all the packets could be written to the file to which the capture was being saved ("C:\DOCUME~1\admin\LOCALS~1\Temp \wireshark_pcapng_BEF426A3-2860-4AC0-8BD7-E050A1941D20 20240213215108 a03356") because there is no space left on the file system on which that file resides.

- @ ×

Please report this to the Wireshark developers. http://bugs.wireshark.org/ (This is not a crash; please do not report it as such.)

ОK

Says it dropped all packets?

-(**kali®kali**)-[**~**]

└─\$ sudo hping3 -c 2000 -d 120 -S -w 64 -p 6002 --flood 6.87.151.210 HPING 6.87.151.210 (eth0 6.87.151.210): S set, 40 headers + 120 data bytes hping in flood mode, no replies will be shown ^C — 6.87.151.210 hping statistic — 11532890 packets transmitted, 0 packets received, 100% packet loss round-trip min/avg/max = 0.0/0.0/0.0 ms

Storage filling up was an issue I was facing with agent deployment I didn't know about

Other Potential Attacks

- Use the scripts written in old adversary box

 Could be a good way to remind myself of basic red-teaming
 They are tested so we know they work
- With PowerShell I can automate DoS, Malware, or scripts to run periodically

o "Start-Process – FilePath "C:/.../..." -NoNewWindow"

• Could use the machine to attack the other machines • Think botnet

Security Onion Work

 Created another swap file to try to fix the alerts and log issues

(base)	ubuntu@ubuntu-vm-	master-120:	\$ free -h			
	total	used	free	shared	buff/cache	available
Mem:	15Gi	10Gi	530Mi	30Mi	4.4Gi	4.6Gi
Swap:	2.0Gi	2.0Gi	14Mi			
(base)	ubuntu@ubuntu-vm	master-120:	-\$			

Age: 3	months
OS Uptime: 7	days (awaiting reboot)
Last Synchronized: 6	minutes ago
Process Status: C	ĸ
Connection Status: C	ĸ
Elasticsearch Status: C	к
RAID Status: F	eature Unavailable
Consumption EPS: 0	
Memory Usage:	68.2% of 16.8 GB
Swap Usage:	99.4% of 2.1 GB
CPU Usage:	4.0%

(base) ubuntu@ubuntu	-vm-ma	ster-	120:~	\$ sudo sw	apon /swapf	ile_exte	nd_4GB		
(base) ubuntu@ubuntu	+vm-ma	ster-	120:~	\$ sudo na	no /etc/fst	ab			
(base) ubuntu@ubuntu	-vm-ma	ster-	120:~	\$ sudo gr	ep swap /et	c/fstab			
/swapfile				non	e	swap	SW	Θ	Θ
/swapfile_extend_4GB				non	e	swap	SW	Θ	0
(base) ubuntu@ubuntu	-vm-ma	ster-	120:~	\$ swapon	show				
NAME	TYPE	SIZE	USED	PRIO					
/swapfile	file	2G	2G	- 2					
/swapfile_extend_4GB	file	4G	0B	- 3					
(baca) ubuntu@ubuntu	-1/00-00.20	ctor-	120	S free -h					

Age:	3 months
OS Uptime:	7 days (awaiting reboot)
Last Synchronized:	a minute ago
Process Status:	ок
Connection Status:	ок
Elasticsearch Status:	ок
RAID Status:	Feature Unavailable
Consumption EPS:	0
Memory Usage:	67.8% of 16.8 GB
Swap Usage:	33.1% of 6.4 GB
CPU Usage:	9.4%
I/O Wait:	0.2%
Root Partition Usage:	41.6% of 263.1 GB
NSM Partition Usage:	0.0% of 0.0 GB

Security Onion Work

- Got the logs coming back into Security Onion Console by reverting to a previous snapshot, so had to redo some of the work in the past weeks
- Caused some issues with the grid display, but still intaking the sensors' logs

Count 🕒 🛄 [] 🗕	observer.name
583	ubuntu-vm-sensor-111
27	ubuntu-vm-sensor-122
27	ubuntu-vm-sensor-113
Rows per page:	10 💌 1-3 of 3 < >

Security Onion Future Work

- Adjust the rules in Suricata for OT
- Explore more of the applications like Kibana since the alerts and logs are displayed
- Focus on better connection and transparency with each of the components, i.e., machine learning, Caldera, and Navigator

ATT&CK Navigator

- Docker container running on Gravwell VM to host Navigator locally.
- This way we can modify and dynamically update the matrix using ATT&CK <u>APIs</u>.
- Plan: Caldera/kali attacks > SO collects logs > logs build matrix with Navigator > SO Playbook uses this info to build prevention/detection rules > Playbook constructs its own matrix of TTP defense perimeter.

